All-in-One Microbiome Analysis with OmicsBox

David Seide, Gabriele Nocchi, Jesús Gutiérrez, Robert Nica, Mariana Monteiro, Alejandro Rocamonde, Carlos Menor, Francisco Salavert, Stefan Götz BioBam Bioinformatics S.L., Valencia, Spain

Abstract

Metagenomics has many applications in different fields such as medicine, engineering, agriculture among others, as well as, benefits from DNA sequencing technology improvements and the continuous development and evolution of dedicated bioinformatics tools and databases. However, there is no universally suitable analysis strategy that guarantees best results for all applications. Experimental design, different input data and hypothesis require detailed knowledge about used tools, databases and possible combinations of the analysis steps. This is a major challenge for non bioinformatics experts.

Here the novel Metagenomics Module of OmicsBox is presented. It employs best practices in an intuitive way with many analysis options. It works in an out-of-the-box way without complex installations or specific hardware requirements. Up-to-date tools and databases are directly available via OmicsBox cloud. Raw read sequencing data, either 16S amplicon based or shotgun data can be used. Analysis steps can be combined in many possible ways and custom pipelines

) OmicsBox

Main Features

Taxonomic Classification Identify present species (Bacteria, Archaea, Virus) with Kraken and visualize results with multi-level pie-charts (Krona) as well as inter-sample comparison bar charts.

Metagenomic Assembly Choose between MetaSPAdes and MEGAHIT to assemble large datasets easy and fast in the cloud.

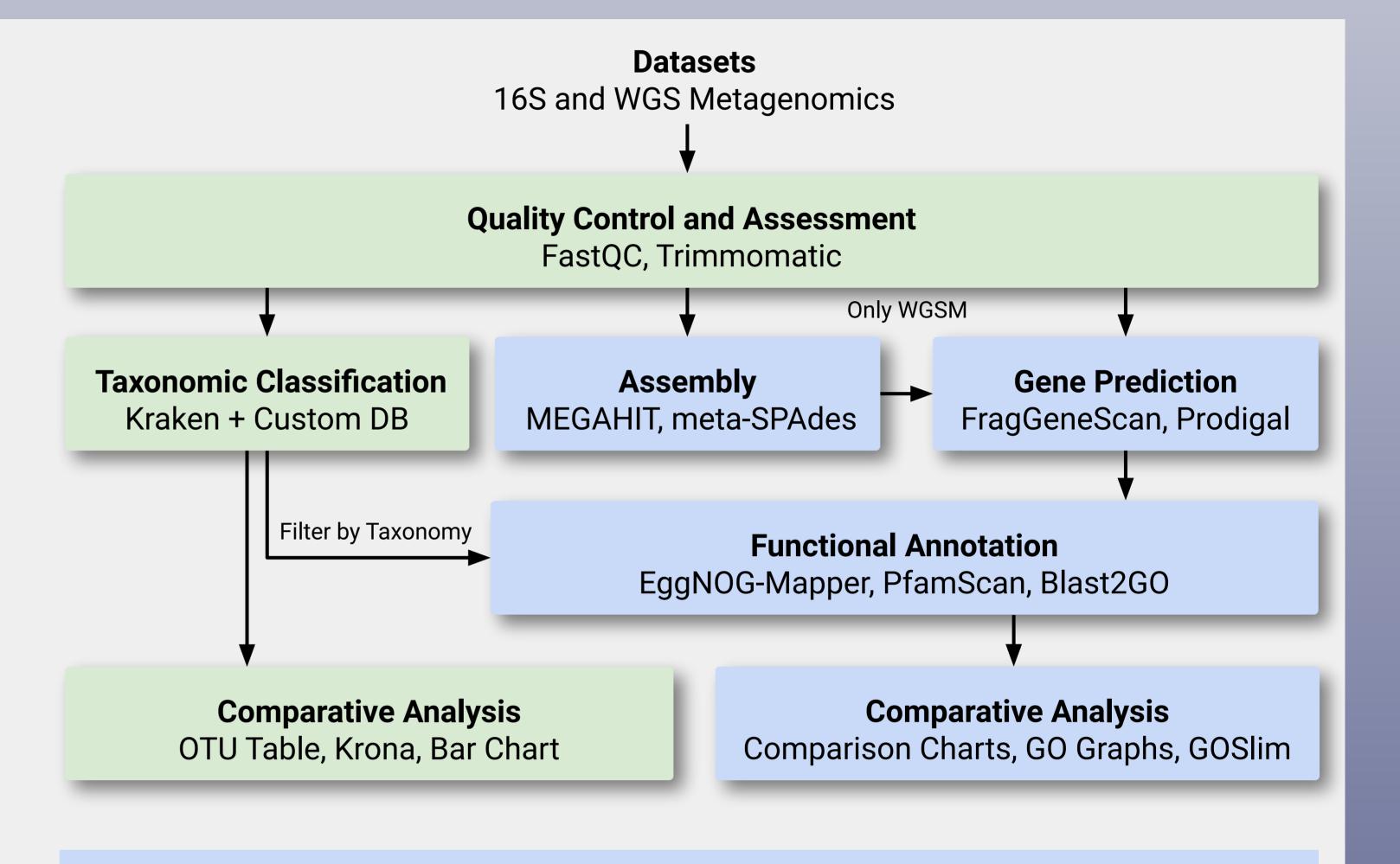
Gene Prediction Use FragGeneScan directly on read data and Prodigal for assembled contigs to identify and extract possible genes and proteins.

Functional Annotation Use EggNOG-Mapper and PfamScan to obtain high-throughput functional annotations. Results can be represented and compared visually with GO graphs and charts.

can be created with a workflow editor. This allows to obtain biological insights in a timely manner. All analysis steps can be carried out on a standard laptop or workstation with 4GB of RAM running Windows, Linux or macOS.

Workflows

ASTQ Preprocessin


Ð

Taxonomic Classification

The workflow in the figure on the right shows taxonomic classification of metagenomics data with OmicsBox. First, the reads are preprocessed, and a report is generated. Kraken is used to identify and count all the different OTUs for further interpretation. The spreadsheet-like result can be filtered and organized. The PDF report gives a clean overview about the most abundant OTUs at different levels for each sample.

Functional characterization of metagenomics data is a complex task. The OmicsBox Metagenomics module allows you to design streamlined workflows to easily combine the typically resource-demanding assembly step with gene prediction, as well as high-throughput functional annotation for large metagenomics datasets. The workflow in the bottom figure shows an example workflow of the combination of MEGAHIT with Prodigal. Fast and comprehensive functional annotation is achieved with the integration of EggNOG-Mapper and PfamScan.

Colored GO Graph

OTU Abundances Table

Sort and filter the taxonomic classification results, and extract all reads that belong to selected OTUs. Continue the assembly with reads that belong to selected groups of OTUs and obtain a more specific assembly. Refine your reports with customized distribution charts in various styles.

😇 Rank	🛨 TaxiD	🐨 Scientific Name				P Hide Toolbar		
unclassified	0	Unknown	102978 73332 88		88547	Actions		
superkingdom	2	Bacteria <prokaryotes></prokaryotes>	11404	11404 8852		Summary Report	۲	
phylum	1224	Proteobacteria	7715	6298	7131	Taxa Bar Chart	1	
class	28216	Betaproteobacteria	3326	2984	3565	Taxa Pie Chart	1	
order	80840	Burkholderiales	2826 2536 3		3037		1.000	
dass	28211	Alphaproteobacteria	2260	1612	1741			
class	1236	Gammaproteobacteria	1427	1173	1225			
phylum	201174	Actinobacteria <phylum></phylum>	1421	998	1180			
family	80864	Comamonadaceae	1308	Extract Sequen	A			
class	1760	Actinobacteria <class></class>	1248	Extract Selection				
order	356	Rhizobiales	1130	Copy Content of Column: PAB1 1 to Clipboard Create ID List of Column: PAB1 1				
family	119060	Burkholderiaceae	556					
phylum	976	Bacteroidetes <phylum></phylum>	545 🕜					
phylum	1239	Firmicutes	502	Create Catego	ry Chart of Colur	nn: PAB1 t and: >		
order	72274	Pseudomonadales	447 🕄	Create Distribu	ition Chart of Co	lumn: PAB1 t		
order	204457	Sphingomonadales	410	276	285			

G

G

KrakenResults

G

G

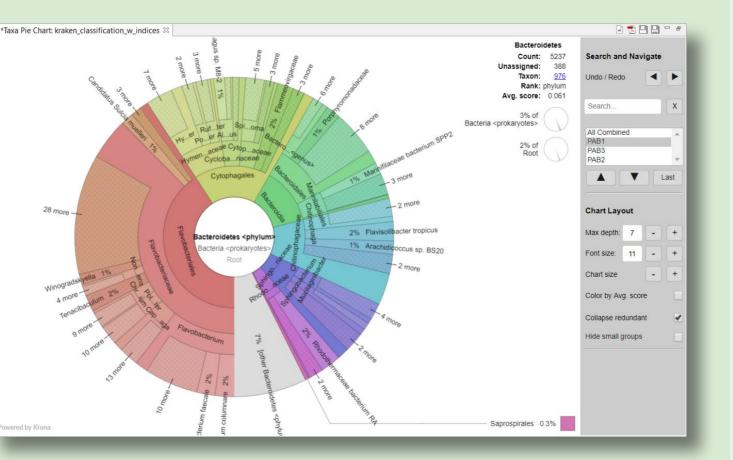
G

G

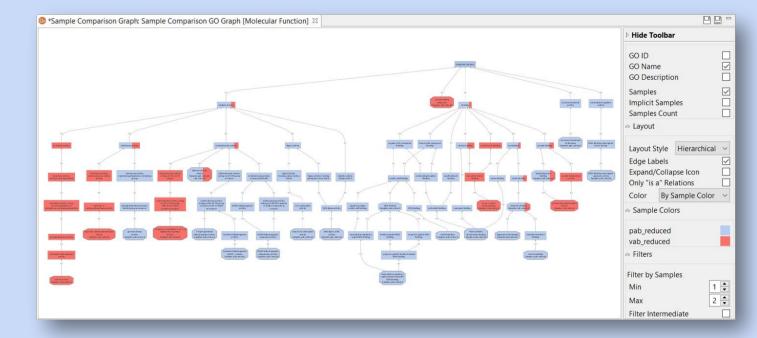
G

PfamScan Annotation

EggNOG Annotatio


G

FASTQ Quality Check


axonomic Classification

OTU Abundances Pie Chart

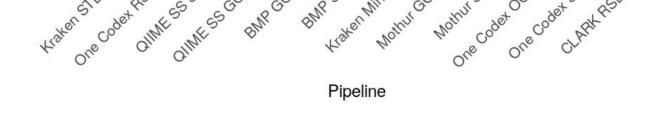
Interactively visualize all OTUs and their abundances with the Krona chart library. Browse through each sample's rank hierarchy and compare abundances or color each OTU according to the corresponding confidence scores determined by Kraken.

Compare GO annotation abundances visually between samples and take into account the GO hierarchy. Nodes are colored partially depending in which samples they are more abundant.

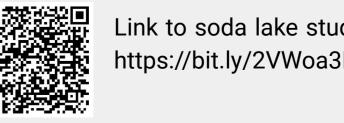
Functional Abundance Comparison

Compare annotation abundances (GO, Pfam, EggNOG, etc.) between different samples with many individual options. Choose the chart style, sample colors and names, and sort by similarity or difference among others.

Results


OmicsBox Metagenomics Module The allows to perform best-practices microbiome analysis steps while successfully eliminating the hurdles of complex installations and high-performance computing requirements. Exhaustive benchmarking for 16S (Ref: Siegwald L, et al.) showed best-in-class performance. Taxonomic classifications with Kraken (Ref: Wood DE. and Salzberg SL.) for bacteria, archaea, viral data showed remarkable F1-scores (see chart). A WGS metagenomics study of two different soda lake microbial communities (see QR code) showed that the generation of functional annotations and the intersample comparisons were straightforward and offer insights for the interpretation of the underlying biological conditions.

50k Pipeline Benchmark Family Level Precision - Recall


Inter-Sample Comparison Bar Chart

Summarize and compare OTUs abundance compositions at certain ranks and draw conclusions on what factors influence your data.

PAB1										
PAB2								_	_	
PAB3										_
VMS1										_
VMS2		i de la companya de l			_					
VMS3										_
0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
An	hanizomenona		Comamonad	20220	Nostocaceae	Pseudom	onadaceae	Rivulariad	020	< 1/8 ►

Datasets and comparison taken from Siegwald L, et al. PLoS One. 2017;12(1):e0169563. doi:10.1371/journal.pone.0169563 and compared against the current Kraken standard database performance.

Link to soda lake study use case: https://bit.ly/2VWoa3F

Please visit www.biobam.com/omicsbox

BioBam is a leading bioinformatics solution provider which accelerates research in disciplines such as agricultural genomics, microbiology and environmental NGS studies, among others. BioBam is committed to the development of user-friendly software solutions for biological research.

